
Appendix 

 

EACCD 

 

The EACCD (Chen 2009) is an unsupervised learning algorithm designed to partition patients 

who have records on the survival time and censoring status as well as measurements on a 

sequence of selected categorical variables. Development has targeted on its application and 

improvement (Qi et al. 2013, Qi et al. 2014, Chen et al. 2016, Wang H et al. 2017, Hueman et 

al. 2018, Wang et al. 2018). The algorithm consists of 3 steps: defining initial dissimilarities (in 

terms of the difference between survival functions) between combinations, computing learned 

dissimilarities, and performing hierarchical clustering of the combinations. One convenient 

version of the algorithm is seen as follows:  

 

Given a collection of combinations {𝐶𝑜𝑚𝑏1, 𝐶𝑜𝑚𝑏2, ……, 𝐶𝑜𝑚𝑏𝑛} and nonnegative weights 

𝑤1, 𝑤2, . . . , 𝑤𝑛 with ∑ 𝑤𝑘
𝑛
𝑘=1 = 1. 

1. Define the initial dissimilarity𝑑𝑖𝑠₀(𝑐𝑜𝑚𝑗, 𝑐𝑜𝑚𝑗)for any pair 𝑐𝑜𝑚𝑖 and 𝑐𝑜𝑚𝑗. 

2. For each 𝑘 with 1 ≤ 𝑘 ≤ 𝑛, apply the two-phase PAM and the initial dissimilarities in 

Step 1 to partition combinations into 𝑘clusters, and define 𝛿𝑘(𝑖, 𝑗) = 1 if 𝑐𝑜𝑚𝑖and 

𝑐𝑜𝑚𝑗are not assigned into the same cluster and 𝛿𝑘(𝑖, 𝑗) = 0otherwise. Define the learned 

dissimilarity 𝑑𝑖𝑠(𝐶𝑜𝑚𝑏𝑖, 𝐶𝑜𝑚𝑏𝑗) =∑ 𝑤𝑘𝛿𝑘(𝑖, 𝑗)𝑛
𝑘=1 . 

3. Perform hierarchical clustering to cluster the combinations. 

 

In Step 1, the initial dissimilarity can be defined as the value of a test statistic, such as the log-

rank test statistic, Gehan-Wilcoxon test statistic, and Tarone-Ware test statistic. When the sizes 

of combinations are big, better initial dissimilarities can be defined by effect-size based 

measures, such as hazard ratios and Mann-Whitney parameters (Wang 2017, 2018).  

 

Step 2 utilizes initial dissimilarities in Step 1 and an ensemble process to compute the learned 

dissimilarities, which are more data driven than the initial dissimilarities. The two-phase 

Partitioning Around Medoids algorithm (PAM) (Kaufman & Rousseeuw 1990) is used in the 

ensemble process to partition combinations. The results from PAM are then combined to produce 

the learned dissimilarity, which is simply the weighted percentage of the times two combinations 

are not placed into the same cluster by the PAM algorithm. One simple selections of weights is 

𝑤𝑘 = 1/𝑘𝑤 with 𝑤 = 1/1 + 1/2+. . . +1/𝑛 for 𝑘 = 1, 2, . . . , 𝑛. In early versions EACCD, 

learned dissimilarities were obtained by averaging the results from many runs of partition 

methods, which could take a long time to complete if a huge number of runs were used. In 

contrast, Step 2 above only requires to run PAM n times, a number determined by the number of 

combinations. 

 



Step 3 clusters the combinations by the learned dissimilarities from Step 2 and a linkage method. 

Single linkage, average linkage, complete linkage, minimax linkage (Hastie 2013, Bien 2011), or 

other agglomerative hierarchical clustering methods may be used in this step. The primary output 

is a dendrogram that provides a graphical summary of patients’ survival based on the levels of 

prognostic factors or variables. 

 

In this report, the initial dissimilarity in Step 1 is based on the “Gehan effect size” described 

below; the weights in Step 2 are chosen to be 𝑤1 =. . . = 𝑤𝐾 = 1/𝑛; and the complete linkage 

method is used in Step 3. 

 

Gehan Effect Size 

 

Gehan-Wilcoxon test (Gehan 1965) is one of the most popular tests in detecting the difference 

between two populations’ survival. Gehan-Wilcoxon test statistic can be represented as a 

weighted difference in the estimated hazards (Fleming & Harrington 1991). Let 𝑡1,..., 𝑡𝐽be the 

observed death times, then the weighted statistic is  

𝑈 = ∑
𝑌𝑗

𝑛1+𝑛2
(𝐷1𝑗 − 𝐷𝑗

𝑌1𝑗

𝑌𝑗
)𝐽

𝑗=1 ,  

where 𝑛1and 𝑛2 are, respectively, the number of patients who died and at risk at 𝑡𝑗 in population 

𝑖 (𝑖= 1, 2), 𝐷1𝑗and 𝑌1𝑗 are, respectively, the number of patients who died and at risk at 𝑡𝑗 in 

population 𝑖 (𝑖= 1, 2), and 𝐷𝑗and 𝑌𝑗 are, respectively, the number of patients who died and at risk 

at 𝑡𝑗 in both populations. It can be shown, in probability,  

𝑛1 + 𝑛2

𝑛1𝑛2

𝑈 → ∫ 𝑆1(𝑡)(1 − 𝐺1(𝑡))𝑆2(𝑡)(1 − 𝐺2(𝑡))(𝜆1(𝑡) − 𝜆2(𝑡))𝑑𝑡 

where 𝑆𝑖(𝑡), 𝐺𝑖(𝑡), and 𝜆𝑖(𝑡)are, respectively, the survival function, cumulative distribution 

function of censoring, and hazard function in population 𝑖 (𝑖= 1, 2). We call the integral on the 

right hand side the Gehan effect size, which does not depend on sample sizes. As a result, 
𝑛1+𝑛2

𝑛1𝑛2
𝑈 estimates the weighted differences in hazards and can be used as a measure of 

dissimilarity between two populations’ survival functions.  

 

 


